ACUTE LIMB ISCHEMIA IN CRITICALLY ILL COVID-19 PATIENTS: A CASE SERIES AND LITERATURE REVIEW

Soumaya Touzani, Fatima Zahra Haddari; Abderrahim El Bouazzaoui; Nawfal Houari; Brahim Boukatta; Nabil Kanjaa; COVID-19 ICU, Anesthesiology and Intensive Care Department A4, Hassan II University Hospital, Fez, Morocco Medical School of Fez, Sidi Mohammed Ben Abdellah University, Fez, Morocco

ABSTRACT

Background: The vascular burden increased by COVID-19 infection and including acute limb ischemia (ALI) quickly emerged as a major medical challenge with devastating consequences such as limb loss, multiorgan dysfunction and death. We report a case series of COVID-19 infection associated with ALI to raise awareness and knowledge towards this life-threatening association.

Methods: COVIDS-19 patients with acute limb ischemia (ALI) managed in a Moroccan 14 beds COVID-19 ICU between March 2020 and January 2021, were reviewed. Data collected included demographics, clinical presentation, treatments and outcomes.

Results: Over the 10-month period, our ICU cared for 407 hospitalized patients with confirmed COVID-19. A total of 6 COVID-19 patients with ALI were identified. The mean age was 61 years (52 - 70) and 5 were men. The most common preexisting condition was diabetes (50%). The mean CRP level was 219 mg/L. Five patients had thrombus in multiple locations. No concomitant deep vein thrombosis was identified. Four patients presented with signs of acute No arterial ischemia with or without respiratory symptoms and were subsequently diagnosed with COVID-19. The remaining two patients developed ischemia during hospitalization. Mean SOFA score was 5 (2 - 9). Respiratory support, corticosteroids and heparin therapies were used in all patients. Intubation and vasopressors were required in four patients. Revascularization was performed in five patients and reintervention was necessary in three cases. Four patients died in the ICU while two were successfully discharged.

Conclusion: ALI in COVID-19 patients is a challenging life-threatening vascular emergency that requires appropriate multidisciplinary management (intensivists, anesthesiologists, vascular surgeons and interventionists, radiologists, haematologists…) and further studies focused on anticoagulation.

Key Words: Acute Limb ischemia; coagulopathy; SARS-CoV-2; Thrombosis.

Corresponding Author:
Soumaya Touzani, MD
Affiliation: COVID-19 Intensive Care Unit A4, Anesthesiology and Intensive Care Department A4, Hassan II University Hospital, Fez, Morocco.
E-mail: touzani.soumaya@gmail.com
Tel: + (212) 660489629

Copyright © 2012-2021 Soumaya Touzani, et al. This is an open access article published under Creative Commons Attribution -Non Commercial- No Derives 4.0 International Public License (CC BY-NC-ND). This license allows others to download the articles and share them with others as long as they credit you, but they can’t change them in any way or use them commercially.

doi: 10.46327/msrjg.1.000000000000-----
doi url: https://doi.org/10.46327/msrjg

INTRODUCTION

Coronavirus Disease (COVID-19) is no longer considered an infectious lung disease with a traditional ARDS (Acute Respiratory Distress Syndrome) but rather a convergence of vascular dysfunction, thrombosis, and dysregulated inflammation, that can lead to multi-organ failure and death [1, 2]. COVID-19 induced hypercoagulability is linked to a significant increasing risk of arterial and venous thrombosis [3, 4]. The vascular burden increased by COVID-19 infection and including acute limb ischemia (ALI) quickly emerged as a major medical challenge with devastating consequences such as limb loss, premature intubation, multiorgan dysfunction and death [5]. Bellosta et al reported an increasing incidence of ALI during the pandemic peak (16.3% versus a baseline rate of 1.8% in the region study) and poorer surgical results due to the associated acquired hypercoagulability [6]. We report a case series of COVID-19 infection associated with ALI...
since awareness and knowledge of this life-threatening association may improve early clinical identification and appropriate management.

METHODS

This is a single center retrospective study conducted in a Moroccan 14 beds COVID-19 ICU over the period from March 24, 2020 to January 1st, 2021. All patients infected with COVID-19 with acute limb ischemia (ALI) were included. The diagnosis of COVID-19 was based on real-time polymerase chain reaction (rt-PCR) of nasopharyngeal swab or serological blood test and/or chest CT scan. ALI was assessed by the vascular surgery team of our tertiary university hospital. Data collected included demographics, co-morbidities, clinical presentation, treatments and outcomes.

RESULTS

Throughout the 10-month study period, our unit cared for 407 hospitalized patients with confirmed COVID-19 infection. A total of 6 COVID-19 patients with ALI were identified. The mean age was 61 years (range 52 - 70) and 5 were men. Four of our patients had co-morbidities and were at risk of atherosclerosis while the other two were active with no co-morbidities. The most common preexisting condition was diabetes (50%). Four patients presented with signs of acute arterial ischemia with few or no respiratory symptoms and were subsequently diagnosed with COVID-19. The two remaining patients developed limb ischemia within 2 and 5 days following hospitalization. The mean CRP level was 219 mg/L. Computed tomography angiogram was diagnostic in five patients while one patient was too unstable for transport to imaging. The diagnosis in this latter case was based on clinical signs of acute ischemia. The lower extremity was affected in all our patients and thrombosis of large (aorta, iliac) and medium-sized (superficial/deep femoral, popliteal) arteries were the most commonly found. Four patients had multi-located arterial thrombi and no coexisting deep vein thrombosis was detected. Mean SOFA score was 5 (Range 2 -9). Respiratory support, corticosteroids and heparin therapies were used in all patients. Intubation and vasopressors were required in four patients. One patient was deemed too unstable for surgical intervention. Revascularization surgeries were performed in five patients under general or regional anesthesia as required by the patients and re-intervention was necessary in three cases. Out of the five operated patients, three received open thrombectomy, one received open thrombectomy over two interventions and one bypass surgery, and one received endovascular thrombectomy, open thrombectomy, bypass surgery and secondary amputation over four interventions. Four patients died in the ICU while two were successfully discharged. Table 1 summarizes characteristics, diagnosis, management and outcomes of our patients.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Patient 1</th>
<th>Patient 2</th>
<th>Patient 3</th>
<th>Patient 4</th>
<th>Patient 5</th>
<th>Patient 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years), gender</td>
<td>70, male</td>
<td>63, female</td>
<td>56, male</td>
<td>60, male</td>
<td>52, male</td>
<td>69, male</td>
</tr>
<tr>
<td>Co-morbidities</td>
<td>0</td>
<td>Hypertension</td>
<td>Diabetes</td>
<td>Coronary disease</td>
<td>Hyperthyroidism</td>
<td>Diabetes</td>
</tr>
<tr>
<td>Charlson Comorbidity Index</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Usual antithrombotic therapy</td>
<td>No</td>
<td>Aspirin 75mg/day</td>
<td>Curative anticoagulation</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Antithrombotic therapy at time of arterial event</td>
<td>Curative anticoagulation</td>
<td>Curative anticoagulation</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Symptoms on hospital admission</td>
<td>Respiratory</td>
<td>Respiratory</td>
<td>Respiratory + Acute right lumb ischemia</td>
<td>Respiratory + Lumb Ischemia</td>
<td>Lamb Ischemia</td>
<td>Respiratory + Lumb Ischemia</td>
</tr>
<tr>
<td>COVID-19 infection</td>
<td>Time to hospital consultation (days)</td>
<td>7</td>
<td>10</td>
<td>8</td>
<td>3</td>
<td>NA</td>
</tr>
<tr>
<td>Clinical presentation</td>
<td>Severe ARDS</td>
<td>Severe ARDS</td>
<td>Severe ARDS</td>
<td>Severe ARDS</td>
<td>NA</td>
<td>ARDS</td>
</tr>
<tr>
<td>RT-PCR</td>
<td>Negative</td>
<td>Negative</td>
<td>Positive</td>
<td>Positive</td>
<td>NA</td>
<td>Positive</td>
</tr>
<tr>
<td>IgG Serology</td>
<td>Positive</td>
<td>Positive</td>
<td>NA</td>
<td>NA</td>
<td>Positive</td>
<td>Positive</td>
</tr>
<tr>
<td>Chest CT scan</td>
<td>Damage > 55%</td>
<td>Damage 75%</td>
<td>Damage > 75%</td>
<td>Damage ≥75%</td>
<td>Bacterial-type condensation</td>
<td>Damage 25 -50%</td>
</tr>
</tbody>
</table>
Arterial ischemia event

<table>
<thead>
<tr>
<th>Days COVID onset to thrombotic event</th>
<th>Symptoms</th>
<th>CT angiography</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Right leg acute ischemia</td>
<td>NA</td>
<td>Medical + embolectomy</td>
</tr>
<tr>
<td>12</td>
<td>Left leg acute ischemia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Acute left lumb ischemia</td>
<td></td>
<td>Medical + embolectomy/Bypass</td>
</tr>
<tr>
<td>4</td>
<td>Acute right lumb ischemia</td>
<td></td>
<td>Medical + embolectomy/Bypass/Amputation/Reamputation</td>
</tr>
<tr>
<td>Unknown</td>
<td>Unknown</td>
<td></td>
<td>Medical + embolectomy</td>
</tr>
<tr>
<td>0</td>
<td>Acute bilateral lumb ischemia</td>
<td></td>
<td>Hematoma</td>
</tr>
</tbody>
</table>

Descending thoracic aorta
- Unstable ulcerated atheroma plaque
- Left: popliteal + internal iliac arteries occlusion
- Right: deep femoral artery occlusion

Sub-renal aorta
- Atheroma
- Superior mesenteric artery: Subtotal occlusion
- Left: primitive iliac and common femoral arteries occlusion
- Right: common femoral artery occlusion

Blood parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creatinine, mg/l (Range 8 - 14.40)</td>
<td>9</td>
</tr>
<tr>
<td>WBC, /mm3</td>
<td>20450</td>
</tr>
<tr>
<td>C-reactive protein, mg/l (NR 0 - 5)</td>
<td>256</td>
</tr>
<tr>
<td>CPK, IU/l (NR 0 - 171)</td>
<td>63</td>
</tr>
<tr>
<td>LDH, IU/l (NR 0 - 248)</td>
<td>-</td>
</tr>
<tr>
<td>Platelets, /mm³</td>
<td>435000</td>
</tr>
<tr>
<td>Prothrombin Time / INR</td>
<td>83.5%</td>
</tr>
<tr>
<td>Ferritin µg/l (NR 20 - 300)</td>
<td>-</td>
</tr>
<tr>
<td>Troponin, ng/ml (NR 0.00 - 0.08)</td>
<td>-</td>
</tr>
</tbody>
</table>

Organ support therapies

<table>
<thead>
<tr>
<th>Intubation</th>
<th>Vasopressors</th>
<th>High flow oxygen therapy</th>
<th>HFNC, NIV, Prone</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICU stay (days)</td>
<td>5</td>
<td>13</td>
<td>14</td>
</tr>
</tbody>
</table>

Outcome

<table>
<thead>
<tr>
<th>Death</th>
<th>Cardiogenic shock</th>
<th>Hospital discharge 7 days after ICU discharge</th>
<th>Hospital discharge 48 hours after ICU discharge</th>
<th>Death MOF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Death</td>
<td>13</td>
<td>14</td>
<td>13</td>
<td>19</td>
</tr>
</tbody>
</table>

ARDS: Acute Respiratory Distress Syndrome PaO₂/FiO₂ ≤ 300; MOF: Multiple Organ Failure; NA: Not Applicable; NR: Normal Range; PE: Pulmonary Embolism; RT-PCR: Real Time Polymerase chain reaction; SOFA: Sequential Organ Failure Assessment; WBC: White Blood Cell Count. *Lee criteria: High risk surgery; coronary artery disease; congestive heart failure; cerebrovascular disease; diabetes mellitus on insulin; serum creatinine>2mg/DL
DISCUSSION

Despite anticoagulation, a high number of critically ill COVID-19 patients developed life-threatening thrombotic complications [3, 4], which raised questions about the unique physiopathology of COVID-19. Findings suggest that COVID-19 may predispose to both venous and arterial thromboembolism due to excessive inflammation, cytokine release, endothelial dysfunction, immobilization, hypoxia, and diffuse intravascular coagulation [2]. As a consequence of the COVID-19 induced coagulopathy, ALI emerged as a new crisis during the current pandemic as cases were constantly reported worldwide, and even among non-atherosclerotic COVID-19 patients [6 - 21]. As data result from case series and case reports, the incidence is not well studied and widely variable ranging from 0.3% [22] to 16.3% [6]. In the Italian observational study, Bellosta et al concluded that COVID-19 infection might increase the incidence of ALI (16.3% during the pandemic peak versus a baseline rate of 1.8% in the region study) and be associated with poorer surgical results due to the induced hypercoagulability [6]. The incidence may be higher among critically ill patients as they are highly hypoxicemic and inflammatory and because of immobilization. Within 10 months and among the 407 COVID-19 patients admitted to our unit, we provided care for six COVID-19 patients with acute limb ischemia. ALI typically occurs in hospitalized patients with severe COVID-19 within five to seven days after respiratory decompensation but can also affects patients with mild COVID-19 ALI [6, 22 - 24]. However, it can be the sole clinical manifestation of COVID-19 [25, 26] as in the case of our patient 5 (Table 1) as occur following recovery [27, 28]. ALI can develop in COVID-19 patients with no usual risk factors such as older age, obesity, and cardiovascular co morbidities and even when receiving thromboprophylaxis [6, 22 - 24]. The thrombosis of large and medium size vessels of the lower extremity [6, 22 - 24] is more commonly reported than the upper limb [29 - 31] while thrombosis of small vessels can be related to vasopressors administration [32]. Thrombosis of prior vascular reconstruction involving stents and bypass grafts have also been reported [33]. Our findings are consistent with the reported clinical features above. COVID-19 induced hypercoagulability is likely related to an inflammatory cascade that leads to an endothelial thrombo-inflamatory syndrome through cytokine storm, complement activation, and endotheliitis. The virus itself may possibly activate the coagulation cascade through its receptors (angiotensin-converting enzyme 2) on vascular muscle and endothelial cells membranes [2, 34]. Increasing D-dimer and inflammatory biomarkers such as C-reactive protein, leukocytes, ferritom, lactate dehydrogenase and interleukin-6 in hospitalized patients may thus indicate the occurrence of thrombotic events [35 - 37]. The severity of ALI determines the urgency and type of diagnostic evaluation and course of treatment. This vascular emergency is associated with significant morbidity and mortality and is defined as < 2 weeks of severe hypoperfusion of the limb characterized by new or worsening symptoms featuring the 6 Ps: pain, pallor, poikilothermia, pulselessness, paresthesia and paralysis. The diagnosis is predominantly clinical and vascular imaging (duplex ultrasound, computed tomographic angiography) confirms the location and extent of arterial obstruction [38]. Therefore, imaging should be guided by resources availability and patient stability and should not delay therapeutic management, especially in hypoxemic COVID-19 patients whose transport can be a real challenge. Since timely and appropriate therapeutic anticoagulation is crucial when it comes to limb salvage and overall survival [6], all our patients received bolus followed by continuous infusion of intravenous unfractionated heparin (UFH). It is suggested that heparin efficacy is related to both its anticoagulant and anti-inflammatory properties of inhibiting several chemokines and complement and its antiviral properties of reducing viral binding through its action on the virus' spike protein [39]. However, heparin efficiency may be impaired by a number of coagulation abnormalities observed in COVID-19 patients, such as heparin resistance [40, 41] or heparin-induced thrombocytopenia. The difficulty to achieve the target activated cephalin time (ACT) when treating with UFH have been observed in our patients and thrombotic events requiring re interventions occurred in two cases despite apparently adequate anticoagulation on biology. In this highly inflammatory context, the assessment of ACT or aPTT may be not reliable since it may not reflect the real anti-Xa activity. Intervention decision in COVID-19 patients is conditioned by the severity of systemic illness. Similar to damage control in trauma patients, the principle of "life over limb" is justified. Because of the virus-induced hypercoagulability and despite revascularization attempts (endovascular, open surgical), poorer surgical results and higher mortality and limb loss rates are observed in severe COVID-19 patients with ALI [5, 6, 42]. Following intervention, all our patients were maintained on therapeutic anticoagulation and an antiplatelet agent (Asprin) to reduce incidence of recurrent ischemic events. Out of the five operated patients, two required re-intervention because of a recurrent thrombotic occlusion within the first 48 hours. Bellosta et al have concluded that prolonged
systemic heparin might improve surgical treatment efficacy, limb salvage, and overall survival [6] but additional data on anticoagulation management for COVID-19 related ALI are needed and even anticipated [43]. In our case series, prognosis was generally poor and seems largely driven by both the overall physiologic condition at presentation and the coagulopathy state reflected on the COVID-19 state. Non survivals had higher SOFA score and required more organ support and reinterventions. Among COVID-19 patients who develop ALI, mortality rates are as high as 50% and may be higher among ICU patients [5, 6, 23, 24]. Several studies have reported that D-dimer levels were significantly associated with poor prognosis [37, 44, 45]. While each facility has developed guidelines and protocols for prophylactic and therapeutic anticoagulation, based or not on D-dimer levels, optimal management is still evolving rapidly as we continually acquire new insights into the disease physiopathology. ICU COVID-19 patients being at higher thromboembolic risk, our local consensus includes both a therapeutic dose of anticoagulation and anti-aggregation in the absence of obvious contraindications. The risk of hemorrhage seems no significant compared to the thrombotic risk but further anticoagulation focused studies with detailed hematological monitoring are needed to avoid a one-size-fits-all anticoagulation management. Lastly, this study has several limitations due to its retrospective and monocentric nature but adds to the previous accumulating data while raising awareness towards the poor prognosis of COVID-19 thrombosis and the challenge facing clinicians while managing this condition.

CONCLUSION
Arterial thromboembolic complications carry devastating consequences of limb loss, multiorgan dysfunction and death. ALI in COVID-19 patients is a challenging life-threatening vascular emergency that requires appropriate multidisciplinary management (intensivists, anesthesiologists, vascular surgeons and interventionists, radiologists, haematologists…) and further studies focused on anticoagulation.

CONFLICT OF INTEREST:
None.

ACKNOWLEDGEMENT:
We would like to express our gratitude and appreciation to the whole COVID-19 ICU team of our department.

REFERENCES

