GREATER TROCHANTER TUBERCULOSIS: MRI FINDINGS

Youssef Alaoui Lamrani *1&2, BadrAlami1&2, Hassan El Fattach1&2, MeriemBoubbou1&2, Said Boujraf1&2, Mustapha Maaroufi1&2
1Medical School of Fez, Sidi Mohamed Ben Abdellah University, Fez, Morocco.
2Radiology Department, Hassan II University Hospital, Fez, Morocco.
3Laboratoire des Neurosciences Cliniques, Département de Biophysique et Méthodes d’IRM Clinique, Morocco

Corresponding Author:
Pr. Youssef Alaoui Lamrani, MD.
Address: Radiology Department, Hassan II University Hospital, Fez, Morocco.
E-mail: moulayyoussef.alaouilamrani@usmba.ac.ma

Copyright© 2012- 2016 Dr. Youssef Alaoui Lamrani and al. This is an open access article published under Creative Commons Attribution -Non Commercial- No Derives 4.0 International Public License (CC BY-NC-ND). This license allows others to download the articles and share them with others as long as they credit you, but they can’t change them in any way or use them commercially.

A 26 year-old female was referred by her rheumatologist to perform a hip MRI to explore a right constant inflammatory pain of gradual onset three months ago associated to a restricted range of motion. The patient appeared in good health and there was no injury or prior particular medical history. On examination, she experienced pain on both flexion and extension passive hip mobilization. Radiographs of the right hip revealed no abnormality and chest X-ray was also normal. Magnetic resonance images showed a small great trochanter T1 hypo-intense lesion wit surrounding edema, trochanteric bursitis, and soft tissue large collections extending into the thigh with integrity of coxo-femoral joint (Fig. 1). Surgical exploration was done for drainage and revealed frank pus. Histopathological examination of the collection wall showed an inflammatory granuloma with caseous necrosis confirming the diagnosis of tuberculosis. A total course of 09 months of multidrug anti-tubercular chemotherapy was completed. At the end of the therapy, clinical, and radiographic examinations showed complete recovery without sequelae.

Tuberculosis has been reported in almost all bones of body. The great trochanter tuberculosis (GTT) installation is insidious and clinical symptoms are often vague with moderate painful swelling and stiffness [1]. GTT is about 0.2 to 2% of all osteo-articular tuberculosis, occurring most commonly by hematogenous seeding secondary to primary focus elsewhere, more commonly in the lungs[2]. Isolated
GTT is unusual and thus its awareness is slow and diagnosis is often delayed [1, 2]. Onset of symptoms is usually insidious and disease progression is slow. Duration of symptoms prior to diagnosis ranges from few weeks to few years [1]. Symptomatology is dominated by moderate chronic pain of the trochanteric region. Migrator acute abscess may track muscle sheath to form a huge swelling of the anterior compartment of thigh, or tracking to skin through line of least resistance. Constitutional symptoms such as weakness, loss of appetite, loss of weight, evening rise of temperature, and night sweats may occur but are not very prominent. Laboratory tests are nonspecific, the erythrocyte sedimentation rate is moderately increased in isolated GTT, and it is elevated and associated with leukocytosis in case of bacterial co-infection [3]. All imaging modalities, plain radiography, computed tomography, and magnetic resonance imaging, provide helpful information to incriminate mycobacterium tuberculosis infection [4]. Plain radiographs are the first to be obtained, they are normal in the first stage, or may show minor osteopaenia. Complete bone destruction of the greater trochanter is rarely reported [5]. Computed tomography (CT) provides greater bony detail of irregularly thin lesions, and sclerosis. The presence of calcification within the abscess is reported. CT can show sequestrum rutherford not readily apparent on radiographs and can identify cortical breaks and show the extent of the bone destruction. Contrast enhanced scan demonstrates enhancement of the lesion [6]. The CT scan is the ideal investigation for guiding a percutaneous diagnostic needle in potentially inaccessible sites. MRI with its multplanar capabilities and superb contrast of soft tissue can demonstrate the extent of the soft tissue mass and access the adjacent bones and joints. MRI can also be used to assess radiological response to treatment in the early follow-up period around 6-8 weeks but the findings are variable.

However, all imaging modalities have no diagnostic specificity in regard to tuberculosis, then in non endemic areas or in osteolytic lesion mimicking tumor, biopsy and histopathological study are strongly recommended. Mycobacterium Tuberculosis culture should be taken to tailor treatment for patients with poor treatment response, or in cases with resistance to tuberculous drugs to ensure adequate antimicrobial treatment [7]. Anti-tubercular chemotherapy is the main treatment modality. Drugs are maintained for 6 to 18 months to prevent recurrence. Debridement or resection should be reserved for advanced cases to avoid recurrence and for those not responsive to chemotherapy. Authors recommend delaying surgery for several weeks while the patient receives anti-tubercular therapy to reduce the risk of dissemination of mycobacteria during surgery [8-10]. In migratory abscess, image-guided percutaneous drainage allows minimally invasive treatment and could supplant open surgical drainage. This case demonstrates that GTT should be included in the range of chronic hip pain diagnosis, and MRI detects lesion much earlier than the radiographs in form of marrow involvement. All imaging modalities can guide to diagnosis but biopsy or culture are strongly recommended in non endemic areas.

REFERENCES
7- Bourkadi J E. Tuberculosis management: what have changed? Journal of Medical and Surgical Research (JMSR) 2015, Vol 2; N°2 : 139